’ HOMOMORPHISMS OF l - ADIC GROUPS AND ABELIAN VARIETIES
نویسنده
چکیده
Let k be a totally real field, and let A/k be an absolutely irreducible, polarized Abelian variety of odd, prime dimension whose endomorphism rings is non-trivial and is defined over k. Then the only strictly compatible families of abstract, absolutely irreducible representations of Gal(k/k) coming from A are tensor products of Tate twists of symmetric powers of two-dimensional λ-adic representations plus field automorphisms. The main ingredients of the proofs are the work of Borel and Tits on the 'abstract' homomorphisms of almost simple algebraic groups, plus the work of Shimura on the fields of moduli of Abelian varieties.
منابع مشابه
’ HOMOMORPHISMS OF l - ADIC GALOIS GROUPS AND ABELIAN VARIETIES
Let k be a totally real field, and let A/k be an absolutely irreducible, polarized Abelian variety of odd, prime dimension whose endomorphisms are all defined over k. Then the only strictly compatible families of abstract, absolutely irreducible representations of Gal(k/k) coming from A are tensor products of Tate twists of symmetric powers of two-dimensional λ-adic representations plus field a...
متن کاملEndomorphisms of Abelian Varieties over Finite Fields
Almost all of the general facts about abelian varieties which we use without comment or refer to as "well known" are due to WEIL, and the references for them are [12] and [3]. Let k be a field, k its algebraic closure, and A an abelian variety defined over k, of dimension g. For each integer m > 1, let A m denote the group of elements aeA(k) such that ma=O. Let l be a prime number different fro...
متن کاملp-DIVISIBLE GROUPS: PART II
This talk discusses the main results of Tate’s paper "p-Divisible Groups" [6]. From the point of view of p-adic Hodge theory, this is a foundational paper and within this setting, much of the technical work being done becomes extremely important. From our perspective, having just learned what p-divisible groups are three weeks ago, however, the significance of the results could easily be drowne...
متن کاملOn Drinfeld's universal formal group over the p-adic upper half plane
In his important paper "Coverings of p-adic symmetric regions" [Dr], Drinfeld showed that the p-adic upper half plane and its higher dimensional analogues serve as moduli spaces for certain rigidified formal groups with quaternionic multiplications. Given a formal group of the proper type, together with rigidifying data, over, say, a ring R on which p is nilpotent, Drinfeld constructs an R-valu...
متن کاملSkein algebra of a group
We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2, C)-representations of G. We al...
متن کامل